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Abstract
We investigate the Rouse dynamics of a flexible ring polymer with a prime
knot. Within a Monte Carlo approach, we locate the knot, follow its diffusion
and observe the fluctuations of its length. A topological time scale that is
slower than the Rouse one is found to determine the long time behavior of
several dynamical quantities. The value of the associated dynamical exponent
is zT = 2.32 ± 0.1.

PACS numbers: 36.20.Ey, 64.60.Ht, 02.10.Kn, 87.15.Aa

(Some figures in this article are in colour only in the electronic version)

In the physics of polymers, mutual and self entanglements play an essential role [1]. A
particularly relevant type of entanglement is associated with the presence of knots. Indeed, it
has been known for some time that long ring polymers inevitably contain a knot [2]. Topology
is also of much interest for biopolymers, where knots have been found in the DNA of viruses
and bacteria [3], and also in some proteins [4].

The recent experimental possibility to tie knots in DNA double strands or actin filaments
[5], and to study their diffusion in the presence of a stretching force [6], has further increased
the interest in topology-related issues among polymer physicists [7–9].

So far, the statistical physics of knotted polymers has focused mostly on static properties
[10]. For example, it was found that the presence of a knot does not alter the exponent ν that
relates the radius of gyration RG(N) to the length N of the polymer, RG(N) ∼ Nν , but only
influences scaling corrections [11, 12]. There have been fewer studies of dynamical scaling
properties of knotted polymers, even though the associated time scales could be relevant
to describe gel electrophoresis, folding of knotted proteins or other dynamical processes.
Simulations have given evidence that a peculiar, topological, characteristic time τT determines
the decay of the radius of gyration autocorrelation function of such polymers [13, 14]. This
decay time appears longer than that observed for open or closed unknotted chains. As a
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function of chain length, it was found to scale with a dynamical exponent zT , which could not
be determined precisely but whose value probably is bigger than the Rouse one. So far, the
physical origin of this time was not understood.

In this communication, we investigate how a knot influences dynamical scaling properties
of flexible polymers in a good solvent within the framework of Rouse dynamics [1, 15].
In a simulation, we directly follow the diffusion of the knotted region and determine the
fluctuations of its length (measured along the backbone). The present work is the first one
to apply a recently introduced technique to locate a knot in a polymer [12] in a study of
dynamical properties. On the basis of a diffusion picture, we conjecture a link between zT and
the exponent governing the equilibrium distribution of this length.

In Rouse dynamics, one models a polymer as a set of N + 1 beads (monomers) that are
connected by harmonic springs, and that are subjected to random thermal forces exerted by
the solvent. The motion of the monomers is described by a Langevin equation, which for ideal
chains can be solved using a transformation to normal coordinates. If self-avoidance is taken
into account, Rouse dynamics can no longer be solved exactly, but scaling arguments together
with numerical results [16] show that the center of mass of the polymer, Rcm, performs
ordinary diffusion, i.e.

g3(t, N) ≡ 〈(Rcm(t) − Rcm(0))2〉 � 6Dcmt (1)

where the average is taken over realizations of the stochastic process. The diffusion constant
is inversely proportional to the length N of the polymer, i.e. Dcm ∼ N−1. The autocorrelation
function of the end-to-end vector decays exponentially with a time constant τR that grows as

τR ∼ N2ν+1 (2)

with N. In d = 3, 2ν + 1 � 2.2 [16]. We will refer to τR as the Rouse time scale. It can be
interpreted as the time that the center of mass of the polymer needs to diffuse over a length
equal to its radius of gyration, τR ∼ R2

G(N)/Dcm ∼ N2ν+1.
The diffusion of one particular monomer, or of a segment of m+1 monomers, is described

by the function

g1(t, N) = 1

m + 1

(N+m)/2∑

i=(N−m)/2

〈(Ri (t) − Ri (0))2〉. (3)

It is known [17] that g1(t) has a scaling form

g1(t, N) � tβF (t/τR). (4)

The function F describes the crossover between an initial power-law regime (F(x) → constant,
for x → 0) and a late-time regime for which a monomer has to follow the diffusion of the
whole polymer as given by (1). This implies a power-law form for F at late times and
β = 2ν/(2ν + 1), i.e. in the initial regime the movement of a segment of the polymer is
subdiffusive. Note that g1(τR,N) ∼ R2

G(N), so that the Rouse time scale also corresponds to
the time for one monomer to diffuse over a distance equal to RG(N). In the whole dynamics,
it is the only relevant time.

Rouse dynamics neglects important physical effects such as hydrodynamic interactions
between the monomers. These are taken into account in the Zimm model [1] for which
it is found that the slowest relaxation time becomes proportional to N3ν . In the present
communication, we will concentrate on Rouse dynamics. Several experimental situations are
known by now for which it gives an adequate description. As an example, we mention that
current fluorescence techniques allow us to follow the motion of individual monomers in, e.g.,
DNA-chains and hence to directly determine a function such as g1(t, N). Measurements of this

2



J. Phys. A: Math. Theor. 41 (2008) 122002 Fast Track Communication

type on double stranded DNA have recently seen diffusive behavior of individual monomers
consistent with Rouse behavior [18]. DNA adsorbed on a lipid membrane is another system
of current interest that can be understood in terms of Rouse dynamics [19].

A crucial quantity to characterize the dynamics of a knotted polymer turns out to be the
length of the knot. A precise definition for this quantity can be given for flat knots [20].
These are knots in a polymer that is strongly adsorbed to a plane or constrained between two
walls. In this context, it was found that the length lk of a knot k is a fluctuating quantity,
whose equilibrium distribution function is a power law, p(lk) ∼ l−c

k G(lk/N) where G is a
scaling function. It follows that the average length of the knot scales with N as 〈lk〉 ∼ Nσ ,
with σ = max[0, 2 − c]. In a good solvent, flat knots were found to be strongly localized
(σ = 0) [20], while below the θ -transition, they delocalize (σ = 1) [21]. In order to extend
these results to three dimensions, one needs a good definition of the length of a knot. This
should correspond to the intuitive idea that it measures the portion of the polymer backbone
which ‘hosts’ the knot entanglement [22]. Recently, a powerful computational approach to
determine such a length, and its scaling properties, was introduced [12]. In this method, for
a given knotted ring polymer, various open portions are considered and for each of these a
closure is made by joining its ends with an off-lattice path. The length of the knot in a given
configuration can then be identified with the shortest portion still displaying the original knot.
In this way, it was found that in a good solvent, three-dimensional knots are weakly localized
with an exponent σ = 0.75 ± 0.05.

To simulate the dynamics of knotted polymers, we start from a simple self-avoiding
polygon (SAP) on a cubic lattice with a knot in it. Most of our calculations were done with a
trefoil (31) knot. We used the BFACF algorithm [23] to relax the configuration. This algorithm
works in the grand canonical ensemble, and is known to preserve topology. The resulting
SAP is then evolved according to a N-conserving Monte Carlo dynamics with local moves
only. During the subsequent evolution, using the computational techniques developed in [12],
observables such as the length of the knot, the radius of gyration of the whole polymer, the
location of the center of mass of the polygon and the location of the center of mass of the knot,
Rcm,k , are computed. We have performed calculations for various N � 400.

It can be questioned whether the restriction to a lattice provides a correct description of
continuum dynamics. This problem has, amongst others, been studied in [24] where it was
found that in the presence of excluded volume effects, the N-dependence of the relaxation
times of the first three Rouse modes is consistent with the prediction from scaling theory. In
order to verify our results we have also performed a simulation of the dynamics of a knotted
polymer (of 100 monomers) using a Langevin method5. The results agree both qualitatively
and quantitatively with those coming from the simpler, and faster, lattice algorithm used in the
present work.

From the data on the knot length as a function of time, we can construct the knot length
autocorrelation function 〈lk(t)lk(0)〉c (where the subscript ‘c’ indicates the properly normalized
connected autocorrelation). In figure 1, the top line shows our results for this quantity for
N = 400. This autocorrelation function has a simple exponential decay. Similar behavior is
found for other N values. Figure 2 presents our data for the decay time constants as a function
of N. The behavior is power law, and the exponent is 2.33 ± 0.08. The value of this exponent
is higher than that of Rouse dynamics. Further evidence that this presents a new time scale
comes from an investigation of the autocorrelation function of the radius of gyration of the
polymer. In figure 1 we also plotted our results for this quantity (bottom line). Clearly, it has a
double exponential decay. In comparison, for an unknot, we observe a pure exponential decay.

5 Details will be published elsewhere.
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Figure 1. Semilogarithmic plot of the autocorrelation functions versus time for a SAP with
N = 400. Shown are results for the knot length (upper curve) and the radius of gyration (lower
double exponential curve). The upper curve is also redrawn with a vertical shift downwards in
order to show more clearly that both decays have the same late time behaviour.
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Figure 2. Log–log plot of the topological time scale versus N as determined from the radius of
gyration autocorrelation function (circles) and from the knot length autocorrelation (squares). The
fitted lines have slopes −2.31 ± 0.08 (dashed line) and −2.33 ± 0.08 (full line) respectively.

A careful analysis shows that the time constant of the unknot, together with the fast one of
the knotted polymer, is proportional to τR . On the other hand, as can be seen in figure 1, the
late-time decay of the radius of gyration autocorrelation occurs with the same time constant
as that of the length autocorrelation. A quantitative analysis of its N-dependence supports this
conclusion (see figure 2). Indeed, the value of the associated exponent equals 2.31 ± 0.08,
consistent within the numerical accuracy with that determined from the length autocorrelation.
Together, these data therefore provide strong evidence for the presence of a new, slow time
scale τT ∼ NzT , with zT = 2.32 ± 0.1, in the dynamics of knotted polymers. The data on the
knot length autocorrelation show that this scale corresponds to the time over which the knot
length decorrelates.
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Figure 3. The function g3 of the whole polymer (lower curve) and of the knot (upper curve)
(N = 250). The straight lines are best fits through the initial and intermediate time regimes of the
knot. Their slopes are 0.29 and 0.78, respectively. The dashed vertical line corresponds to τR .

To check if the results are influenced by the topology of the knot, we have performed
a completely similar study for the figure-eight (41) knot. Again the radius of the gyration
autocorrelation function decays as a double exponential, with a fast time scale that can be
identified with τR . The slower time scale grows with N with an exponent whose numerical
value, 2.33 ± 0.08, is consistent with that found for the trefoil. Moreover, the same exponent
was found to govern the decay of the 41 length autocorrelation function.

In order to determine whether the topological time also influences other dynamical
properties, we have investigated the diffusion of the center of mass of the whole polymer
and of the knotted region. From our data, we determine g3(t, N) and a similar quantity for
the knotted part of the polymer

g3,k(t, N) = 〈(Rcm,k(t) − Rcm,k(0))2〉. (5)

This function has some similarity to g1(t, N) since it describes the motion of a segment of the
polymer. Hence we can expect it to have a scaling behavior similar to (4). There are however
differences since the number of monomers in the knot increases with Nσ on average, and, at
fixed N, fluctuates in time.

In figure 3, we show a typical result (N = 250) for the functions g3(t, N) and g3,k(t, N).
Our data for the diffusion of the center of mass of the whole polymer are fully consistent with
equation (1) and with the relation Dcm ∼ N−1, a strong indication that the diffusion of the
polymer as a whole is not changed by the presence of the knot [14]. More interesting is the
diffusion of the knot itself. As can be seen in figure 3, g3,k shows several distinct power-law
regimes. The value of the estimated exponent for the early time region fluctuates with N, but
a good average is 0.27 ± 0.1. This initial regime ends after a time τ1, which grows as a power
of N, τ1 ∼ Nz1 , where z1 = 1.97 ± 0.1. After a short crossover, in an intermediate time
regime, the behavior is again power law, g3,k ∼ tγ . The value of γ decreases from ≈ 0.81 for
N = 100 to a value close to 0.66 at N = 400. An extrapolation gives the asymptotic value
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Figure 4. Scaling plot of our results for g3,k/N
zT γ versus t/NzT for various N-values using

zT = 2.35, γ = 0.57.

γ = 0.6 ± 0.03. Finally, and in analogy to the behavior of g1, we expect a crossover of g3,k to
linear behavior, since the knot eventually has to follow the whole polymer. This crossover has
not happened yet for the times we were able to simulate. In figure 3 the vertical dashed line
indicates the Rouse time, which we have estimated from the relation g3(τR,N) = R2

G(N).
We checked that the Rouse time calculated in this way indeed grows as N2.2. We thus see
that, as was the case for the length autocorrelation, τR does not play a special role for g3,k , and
moreover, it seems that the second crossover occurs on a much slower time scale, which we
expect to be τT . In analogy with (4), we therefore propose this second crossover to be of the
form

g3,k(t, N) � tγ H(t/τT ) t > τ1 (6)

where H(x) becomes constant for small x. Since for t > τT , the behavior of (6) must cross
over into that of (1), we obtain the relation (1−γ )zT = 1. Using the estimate zT = 2.32 ± 0.1,
this leads to γ = 0.57 ± 0.02 consistent with our estimate. In figure 4, we show a scaling
plot of our data for g3,k(t, N) for various N-values (leaving out the initial power law regime)
and using the values zT = 2.35, γ = 0.57. The scaling is rather well satisfied. So, the
available numerical evidence is consistent with the identification of the second crossover time
with τT .

The Rouse time scale gives the time for the polymer to diffuse over its radius of gyration.
We here propose a similar simple interpretation of τT . Indeed, the presence of the knot
introduces a new timescale that is related to its diffusion along the polymer backbone. We
assume that this diffusion is normal and that the associated diffusion constant DK is inversely
proportional to the knot length, i.e. DK ∼ N−σ (see [7] for a similar assumption). We
then identify τT as the time it takes for this diffusion to move over the length of the knotted
region. This gives τT ∼ N2σ /DK ∼ N3σ . Taking the estimate of σ from [12], we find
3σ = 2.25 ± 0.15, which is consistent with the identification zT = 3σ . This agreement
supports the plausibility of our argument.

The same result would be obtained by assuming that the knotted region moves by reptation.
Indeed, reptation of a polymer in a melt introduces a slow time scale τd ∼ N3 [25]. Physically,
τd corresponds to the time needed to change the shape of the tube that confines the movement
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of the polymer. Since the knot length distribution is a fast decaying power-law distribution, the
knot will be rather tight for a considerable fraction of time. One can imagine that for these tight
conformations, the shape of the knotted region decorrelates by a self-reptation mechanism on
a time scale 〈lk〉3 ∼ N3σ . When the knot is looser, its length decorrelates faster. The long
time dynamics is then determined by the slowest, self-reptation, mode. We conjecture that the
combination of slow, reptative and faster, Rouse-like movement gives rise to a net diffusion
with DK ∼ N−σ .

In conclusion, by the first calculation in which dynamical information on the knot itself
was monitored, we provided convincing evidence that the presence of a knot in a ring polymer
introduces a new slow topological time scale. This scale can be understood in terms of a
diffusion of the knotted region along the polymer backbone.
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